MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantitative modeling of 5' splice site subclass regulation and evolution

Author(s)
Kenny, Connor Jens
Thumbnail
DownloadThesis PDF (24.52Mb)
Advisor
Burge, Christopher B.
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Pre-mRNA splicing is an essential molecular process required for eukaryotic gene expression. In this thesis, I present a previously unknown mechanism of splicing regulation where a family of splicing factors, the LUC7 family, compete to differentially impact 5→ splice site (5→ SS) selection in a sequence-dependent manner. I quantitatively characterize two major subclasses of 5→ SS in eukaryotes and outline distinctive features of 5→ SS in exons affected by the three human LUC7 paralogs: LUC7L2 and LUC7L enhance splicing of “right-handed” 5→ SS that exhibit stronger consensus matching on the intron side of the nearly-invariant / GU, while LUC7L3 boosts splicing of “left-handed” 5→ SS with stronger consensus matching upstream of the /GU. Using a range of experimental systems, from human cells to mutant plants, I show that LUC7 paralogs have opposing effects on these two 5→ SS subclasses and that this regulatory mechanism likely originated in the last common ancestor of animals and plants over 1.5 billion years ago. I further evaluate a competing model of 5→ SS subclass regulation involving METTL16- mediated U6 snRNA modification and reconcile both models by devising computational tools that identify sequence features predictive splicing dysregulation in transcriptome-wide datasets. Finally, I examine the evolutionary dynamics of left- and right-handed 5→ SS and propose a model of intron evolution in which codon and intron phase constraints in protein-coding genes shape both minor-to-major intron conversion and transitions between left- and right- 5→ SS subclasses.
Date issued
2025-09
URI
https://hdl.handle.net/1721.1/164489
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.