MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A disposable, self-administered electrolyte test

Author(s)
Prince, Ryan, 1977-
Thumbnail
DownloadFull printable version (15.28Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Joel Voldman and John Williams.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis demonstrates the novel concept that it is possible to make a disposable, self-administered electrolyte test to be introduced to the general consumer market. Although ion specific electrodes have been used to perform point of care electrolyte tests in supervised health care environments since 1992, there has never been a personalized self-administered test available in a supermarket or convenience store. This thesis lays out a novel approach to adapting ion specific electrode technology to produce such a test. The suitability and method of integration of miniature ion-specific electrode technology has been analyzed and shown to be viable for such a purpose. A microelectronic chip has been specifically designed to interface to the sensor, perform the necessary calibration and decision making, and indicate the results to the user. It has been determined that the sensor, the electronics, and the supporting structures will be small and inexpensive enough to be included on a commercial sport drink bottle. The blueprints for this extension, including the selection and integration of a suitable power source, and method of result indication have been specified and shown to support this thesis.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.
 
Includes bibliographical references.
 
Date issued
2003
URI
http://hdl.handle.net/1721.1/18029
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.