Show simple item record

dc.contributor.advisorDavid R. Karger.en_US
dc.contributor.authorLevine, Matthew S. (Matthew Steven)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2005-10-14T19:21:03Z
dc.date.available2005-10-14T19:21:03Z
dc.date.copyright2002en_US
dc.date.issued2002en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/29234
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.en_US
dc.descriptionIn title on t.p., "[kappa]" apears as lower-case Greek letter.en_US
dc.descriptionIncludes bibliographical references (p. [69]-72).en_US
dc.description.abstractWe consider two connectivity problems on undirected graphs: maximum flow and minimum k-way cut. The maximum flow problem asks about the connectivity between two specified nodes. A traditional approach is to search for augmenting paths. We explore the possibility of restricting the set of edges in which we search for an augmenting path, so that we can find each flow path in sub-linear time. Consider an n-vertex, m-edge, undirected graph with maximum flow value v. We give two methods for finding augmenting paths in such a graph in amortized sub-linear time, based on the idea that undirected graphs have sparse subgraphs that capture connectivity information. The first method sparsifies unused edges by using a spanning forest. It is deterministic and takes ... time per path on average. The second method sparsifies the entire residual graph by taking random samples of the edges. It takes O(n) time per path on average. These results let us improve the O(mv) time bound of the classic augmenting path algorithm to O(m + nv3/2) (deterministic) and O(m + nv) (randomized). For simple graphs, the addition of a blocking flow subroutine yields a deterministic O (nm2/3vl/6)-time algorithm. A minimum k-way cut of an n-vertex, m-edge, weighted, undirected graph is a partition of the vertices into k sets that minimizes the total weight of edges with endpoints in different sets. We give new randomized algorithms to find minimum 3-way and 4-way cuts, which lead to time bounds of O(mnk-2 log3 n) for k =/< 6. Our key insight is that two different structural properties of k-way cuts, both exploited by previous algorithms, can be exploited simultaneously to avoid the bottleneck operations in both prior algorithms. The result is that we improve on the best previous time bounds by a factor of O(n2).en_US
dc.format.extent72 p.en_US
dc.format.extent3419122 bytes
dc.format.extent3418927 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAlgorithms for connectivity problems in undirected graphs : maximum flow and minimun [kappa]-way cut.en_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc51458636en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record