Show simple item record

dc.contributor.advisorRobert Griffin.en_US
dc.contributor.authorVeshtort, Mikhail M., 1971-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemistry.en_US
dc.date.accessioned2006-03-24T16:11:04Z
dc.date.available2006-03-24T16:11:04Z
dc.date.copyright2003en_US
dc.date.issued2003en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/29644
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2003.en_US
dc.descriptionVita.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractExact numerical simulations of NMR experiments are commonly required for the engineering of new techniques and for the extraction of structural and dynamic parameters from the spectra. The calculations can be very demanding, especially in the case of solid-state problems. We propose a number of new algorithms that drastically improve the efficiency of these calculations. Among the most important ones are the integration of the equation of motion of the propagator via Chebyshev expansion of the matrix exponential, explicit utilization of the sparsity of the Hamiltonian, and a novel methodology for the simulation of solid-state NMR experiments. We also describe SPINEVOLUTION, a highly optimized computer program developed based on these advanced techniques to be a powerful and easy to use tool for the simulation and data fitting of general NMR experiments. Benchmarked on a series of examples, SPINEVOLUTION was consistently found orders of magnitude faster than another recently developed and widely popular NMR simulation package SIMPSON. The program should be of great utility to people working in NMR for the design and optimization of new experiments, theoretical research, data fitting, etc. A novel strategy for the efficient design of shaped pulses for NMR experiments was developed and implemented in SPINEVOLUTION. The most important component of this approach is our technique for the global optimization on the space of smooth functions, the Grid Search in the Reduce-Dimension Fourier Space (GREDFOS). A series of low-power amplitude-modulated selective excitation pulses have been developed using this strategy. The pulses of this E-Family provide selective excitation with the precision that was not available previously. The pulses were shown to perform well in both liquid and solid state NMR experiments.en_US
dc.description.abstract(cont.) The Magnus expansion is fundamental to the NMR theory. It also explains the paradoxical success of the integration-by-exponentiation method that has been widely used for the integration of the equation of motion with a time-dependent Hamiltonian. We discuss several aspects of the convergence of the expansion that had been left open so far. An unexpected geometrical picture of the long-term behavior of the effective Hamiltonian of a two-level system is also presented.en_US
dc.description.statementofresponsibilityby Mikhail M. Veshtort.en_US
dc.format.extent234 p.en_US
dc.format.extent9707711 bytes
dc.format.extent9707520 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectChemistry.en_US
dc.titleNumerical simulations in nuclear magnetic resonance : theory and applicationsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc53405700en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record