Show simple item record

dc.contributor.advisorPeter S. Kim and David C. Chan.en_US
dc.contributor.authorSuntoke, Tara Ren_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Biology.en_US
dc.date.accessioned2006-02-02T18:56:14Z
dc.date.available2006-02-02T18:56:14Z
dc.date.copyright2005en_US
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/31181
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2005.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractThe experiments described in this thesis were designed to elucidate the manner in which the HIV-1 envelope protein (Env) initiates infection of host cells, and to develop inhibitors of viral entry. Env comprises two non-covalently attached subunits, gpl20 and gp41, that associate as a trimer on the virion surface. Once gp 120 contacts the target cell, gp41 undergoes extensive conformational changes to mediate fusion of viral and cellular membranes. First, a short hydrophobic stretch of residues at the gp4 1 N-terminus insert into the target membrane, anchoring the protein in both viral and cellular membranes. This 'prehairpin' intermediate structure exposes an N-terminal a-helical coiled coil that is the target of promising antiviral peptides and small molecules. A previously unstudied region of N-terminal trimer was stabilized by fusion to a trimeric scaffold peptide and biophysically characterized (Chapter 2). This hybrid peptide itself potently inhibited HIV fusion, and the basis for this inhibition was assessed by studying mutant molecules. Efforts to use this peptide as an immunogen to elicit anti-gp41 antibodies are also outlined. Similar design strategies may be useful in developing N-terminal peptide inhibitors and HIV vaccine candidates, and in screening for antiviral molecules that bind to this region. As fusion progresses, the prehairpin intermediate resolves into a hairpin structure. This critical transition involves interaction of the N-terminal coiled coil with the gp41 C-terminal region. Evidence suggests that this N-C association provides the energy necessary to promote juxtaposition and merging of viral and cellular membranes.en_US
dc.description.abstract(cont.) This hypothesis was tested using a biophysical and cell biological approach (Chapter 3), in which residues essential for this transition were mutated and analyzed. These studies confirm the hypothesis and highlight the importance of specific hydrophobic and polar contacts between the N- and C- terminal gp41 regions. This work contributes to a detailed understanding of the gp41 fusion machinery; furthermore, it shows that such knowledge can be used to design effective viral entry inhibitors. Finally, Chapter 4 places this work in the context of a broad overview of current drug and vaccine developments, and addresses some of the significant challenges that confront HIV researchers.en_US
dc.description.statementofresponsibilityby Tara R. Suntoke.en_US
dc.format.extent114 leavesen_US
dc.format.extent6240695 bytes
dc.format.extent6254745 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectBiology.en_US
dc.titleHIV entry : a biophysical and mutational analysis of gp41-mediated membrane fusion and its inhibitionen_US
dc.title.alternativeBiophysical and mutational analysis of gp41-mediated membrane fusion and its inhibitionen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biology
dc.identifier.oclc61267186en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record