MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Knee design for a bipedal walking robot based on a passive-dynamic walker

Author(s)
Baines, Andrew Griffin
Thumbnail
DownloadFull printable version (1.539Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Ernesto E. Blanco.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Passive-dynamic walkers are a class of robots that can walk down a ramp stably without actuators or control due to the mechanical dynamics of the robot. Using a passive-dynamic design as the basis for a powered robot helps to simplify the control problem and maximize energy efficiency compared to the traditional joint-angle control strategy. This thesis outlines the design of a knee for the robot known as Toddler, a passive-dynamic based powered walker built at the Massachusetts Institute of Technology. An actuator at the knee allows the robot to bend and straighten the leg, but a clutch mechanism allows the actuator to completely disengage so that the leg can swing freely. The clutch operates by using a motor to rotate a lead screw which engages or disengages a set of spur gears. Control of the knee is accomplished by utilizing the robot's sensors to determine whether or not the knee should be engaged. The engagement signal is then fed through a simple motor control circuit which controls the motor that turns the lead screw. The knee design was successfully implemented on Toddler but more work is required in order to optimize his walking. In order to study the dynamics of walking with knees, we also built a copy of McGeer's original passive walker with knees.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.
 
Includes bibliographical references (leaf 30).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/32883
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.