MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Examining financial puzzles from an evolutionary perspective

Author(s)
Guo, Kenrick
Thumbnail
DownloadFull printable version (5.297Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Andrew W. Lo.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we examine some puzzles in finance from an evolutionary perspective. We first provide a literature review of evolutionary psychology, and discuss three main findings; the frequentist hypothesis, applications from risk-sensitive optimal foraging theory, and the cheater detection hypothesis. Next we introduce some of the most-researched puzzles in the finance literature. Examples include overreaction, loss aversion, and the equity premium puzzle. Following this, we discuss risk-sensitive optimal foraging theory further and examine some of the financial puzzles using the framework of risk-sensitive foraging. Finally, we develop a dynamic patch selection model which gives the patch selection strategy that maximizes an organism's long-run probability of survival. It is from this optimal patch strategy that we observe loss aversion. Throughout the thesis, we stress the following: humans' behavior in financial markets is neither inherently irrational, nor is it rational. Rather the puzzles occur as a consequence of evolutionarily-optimal cognitive mechanisms being utilized in environments other than the ancestral domain in which they evolved to adapt in.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2006.
 
Includes bibliographical references (leaves 74-79).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/34147
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.