Show simple item record

dc.contributor.advisorV. Michael Bove, Jr.en_US
dc.contributor.authorMallett, Jacky, 1963-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Architecture. Program In Media Arts and Sciencesen_US
dc.date.accessioned2007-10-22T16:19:36Z
dc.date.available2007-10-22T16:19:36Z
dc.date.copyright2006en_US
dc.date.issued2006en_US
dc.identifier.urihttp://dspace.mit.edu/handle/1721.1/34180en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/34180
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2006.en_US
dc.descriptionIncludes bibliographical references (p. 103-111).en_US
dc.description.abstractRecent research in sensor networks has made it possible to deploy networks of sensors with significant local processing. These sensor networks are revolutionising information collection and processing in many different environments. Often the amount of local data produced by these devices, and their sheer number, makes centralised data processing infeasible. Smart camera networks represent a particular challenge in this regard, partly because of the amount of data produced by each camera, but also because many high level vision algorithms require data from more than one camera. Many distributed algorithms exist that work locally to produce results from a collection of nodes, but as this number grows the algorithm's performance is quickly crippled by the resulting exponential increase in communication overhead. This thesis examines the limits this puts on peer-to-peer cooperation between nodes, and demonstrates how for large networks these can only be circumvented by locally formed organisations of nodes. A local group forming protocol is described that provides a method for nodes to create a bottom-up organisation based purely on local conditions. This allows the formation of a dynamic information network of cooperating nodes, in which a distributed algorithm can organise the communications of its nodes using purely local knowledge to maintain its global network performance.en_US
dc.description.abstract(cont.) Building on recent work using SIFT feature detection, this protocol is demonstrated in a network of smart cameras. Local groups with shared views are established, which allow each camera to locally determine their relative position with others in the network. The result partitions the network into groups of cameras with known visual relationships, which can then be used for further analysis.en_US
dc.description.statementofresponsibilityby Jacky Mallett.en_US
dc.format.extent111 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/34180en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectArchitecture. Program In Media Arts and Sciencesen_US
dc.titleThe role of groups in smart camera networksen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)
dc.identifier.oclc69420169en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record