MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of a High Temperature Gas-Cooled Reactor TRISO-coated particle fuel chemistry model

Author(s)
Diecker, Jane T
Thumbnail
DownloadFull printable version (7.196Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Nuclear Engineering.
Advisor
Ronald G. Ballinger.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The first portion of this work is a comprehensive analysis of the chemical environment in a High Temperature Gas-Cooled Reactor TRISO fuel particle. Fission product inventory versus burnup is calculated. Based on those results a thermodynamic analysis is performed to determine fission product vapor pressures, oxygen partial pressure, and carbon monoxide and carbon dioxide gas pressures within the fuel particle. Using the insight gained from the chemical analysis, a chemical failure model is incorporated into the MIT fuel performance code, TIMCOAT. Palladium penetration of the SiC layer is added to the fracture mechanics failure model. Rare-earth fission product and palladium corrosion of the SiC layer are additionally modeled. The amoeba effect is added as a new failure mode. The palladium penetration model has the most significant result on the overall fuel performance model and increases the number of predicted particle failures. The thinning of the SiC layer due to fission product corrosion has a slight effect on the overall fuel performance model. Finally, the amoeba effect model does not lead to any particle failures, but adds to the completeness of the overall model.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 2005.
 
Includes bibliographical references (p. 135-137).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/34453
Department
Massachusetts Institute of Technology. Department of Nuclear Engineering; Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.