Show simple item record

dc.contributor.advisorJo Anne Stubbe.en_US
dc.contributor.authorHoskins, Aaron A. (Aaron Andrew)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemistry.en_US
dc.date.accessioned2008-02-28T16:24:28Z
dc.date.available2008-02-28T16:24:28Z
dc.date.copyright2006en_US
dc.date.issued2006en_US
dc.identifier.urihttp://dspace.mit.edu/handle/1721.1/34491en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/34491
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2006.en_US
dc.descriptionVita.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractPurine biosynthesis has been used as a paradigm for the study of metabolism of unstable molecules. Both phosphoribosylamine (PRA) and N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) have estimated half-lives in vivo of seconds. In order to avoid metabolite decomposition, one strategy cells could employ is channeling-the direct transfer of a metabolite between enzyme active sites without diffusion into the bulk media. While kinetic evidence for channeling of PRA has been reported between phosphoribosylpyrophosphate amidotransferase (PurF) and glycinamide ribonucleotide synthetase (PurD), no evidence for a PurF:PurD complex has been found. In an effort to detect this complex, stopped-flow fluorescence spectroscopy was used to detect changes in PurF fluorescence that may result from interaction with PurD. Critical to the success of these experiments was incorporation of tryptophan analogs (4-fluorotryptophan and 7-azatryptophan) into the proteins in order to increase signal specificity for PurF. No evidence for a PurF:PurD interaction was found under any of the conditions tested. The implication of this finding is discussed with regard to the PurF:PurD channeling model. Like all amidotransferase enzymes (ATs), channeling of NH3 between glutaminase and AT active sites has been implicated in the formylglycinamide ribonucleotide amidotransferase (FGAR-AT).en_US
dc.description.abstract(cont.) In B. subtilis, the FGAR-AT is composed of three proteins: PurS, PurQ, and small PurL. The first characterization of the B. subtilis FGAR-AT complex was carried out, and it was determined that a complex between the three proteins can only be isolated in the presence of Mg2+-ADP and glutamine. By analogy to the Salmonella FGAR-AT, ADP is believed to be acting as a structural cofactor, while formation of a PurQ-glutamine complex is essential for assembly of the FGAR-AT. Subsequent biophysical studies have indicated that the physiologically relevant form of the FGAR-AT complex contains 2 PurS, 1 PurQ, and 1 small PurL. Further studies on PurQ have identified residues important for catalysis and complex formation, while insight into the small PurL active site has been obtained by studies on the T. maritima enzyme. The FGAR-AT complex provides a new system in purine biosynthesis to study metabolite transfer among weakly interacting proteins.en_US
dc.description.statementofresponsibilityby Aaron A. Hoskins.en_US
dc.format.extent2 v. (341 leaves)en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/34491en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectChemistry.en_US
dc.titleChanneling in purine biosynthesis : efforts to detect interactions between PurF and PurD and characterization of the FGAR-AT complexen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc70850718en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record