Show simple item record

dc.contributor.advisorMichael J. Driscoll.en_US
dc.contributor.authorYarsky, Peteren_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Nuclear Engineering.en_US
dc.date.accessioned2006-11-07T16:46:27Z
dc.date.available2006-11-07T16:46:27Z
dc.date.copyright2005en_US
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/34650
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 2005.en_US
dc.descriptionIncludes bibliographical references (p. 245-248).en_US
dc.description.abstractIn order to fulfill the goals set forth by the Generation IV International Forum, the current NERI funded research has focused on the design of a Gas-cooled Fast Reactor (GFR) operating in a Breed and Burnm (B&B) fuel cycle mode. B&B refers to a once-through fuel cycle where low enriched uranium (less than 5 w/o 235U in U) subcritical assemblies are loaded into the core in equilibrium, yet in-situ plutonium breeding carries the fuel through a discharge burnup on the order of 150 MWD/kgHM. The B&B fuel cycle meets the GenIV goals of sustainability, economics, and proliferation resistance by increasing fuel burnup without the need for spent fuel reprocessing, recycle, or reuse of any kind. The neutronic requirements for B&B are strict and require an ultra-hard neutron spectrum. Therefore, the GFR is ideally suited for this fuel cycle. In the present work the B&B GFR concept evolved into two practical reactor designs, both of which build on extensive previous gas-cooled reactor design experience. The first version is the "demonstration" concept using highly neutronically reactive U15N fuel in a hexagonal pin fuel array that is nearly 50 v/o fuel. The core is helium cooled, with an outlet temperature of 570 °C.en_US
dc.description.abstractThe helium primary circuit is coupled to a steam Rankine power conversion system essentially identical to that for the British Advanced Gas-cooled Reactors. One advantage of the low coolant temperature compared to other GenIV GFR concepts is that it allows for the use of oxide dispersion strengthened stainless steels (ODS) in core. The fuel is manufactured using advanced vibration compaction techniques, clad in ODS, and vented in order to achieve the high burnup goal. The second version, the "advanced" concept builds on the experience of the demonstration concept to develop a B&B GFR without the need for expensive U'5N fuel. In order to substitute the nitride fuel with carbide, significantly higher heavy metal loadings are required (60 v/o fuel for UC versus 50 v/o fuel for U'5N) which are not practically achievable with a conventional pin fuel array. Therefore, an innovative tube-in-duct assembly design was proposed to achieve B&B operation with the less neutronically reactive carbide fuel. The advanced core offers significantly reduced natural uranium requirements and lower equilibrium fuel cycle costs (5 mills/kWhre) compared with conventional light water reactors (7 mills/kWhre), as the burnup is tripled for the same reload enrichment.en_US
dc.description.abstract(cont.) The B&B GFR designs, though requiring active decay heat removal, are semi-self-regulating from a reactivity feedback standpoint and are designed to withstand all plausible accident scenarios, including loss of flow, loss of heat sink, and transient overpower all without scram. Reactor pressure vessel blowdown (LOCA) was investigated and while the B&B GFR has a low positive coolant void reactivity (less than 1$), the added reactivity during blowdown is compensated through other strong negative reactivity feedback mechanisms, thereby allowing for the safe operation of the B&B GFR.en_US
dc.description.statementofresponsibilityby Peter Yarsky.en_US
dc.format.extent248 p.en_US
dc.format.extent15635316 bytes
dc.format.extent15646642 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectNuclear Engineering.en_US
dc.titleCore design and reactor physics of a breed and burn gas-cooled fast reactoren_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineering
dc.identifier.oclc70682341en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record