MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantifying the Main Battle Tank's architectural trade space using Bayesian Belief Network

Author(s)
Lee, Keen Sing, 1972-
Thumbnail
DownloadFull printable version (33.27Mb)
Other Contributors
System Design and Management Program.
Advisor
Daniel E. Whitney.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The design and development of a Main Battle Tank can be characterized as a technically challenging and organizationally complex project. These projects are driven not only by the essential engineering and logistic tasks; as the frequency of technological innovation increases system architects are motivated to apply an effective method to assess the risks and benefits of adopting technological alternatives. This thesis applies Bayesian Belief Network as a quantitative modeling and metrics calculation framework in establishing the preference order of possible architectural choices during the development of a Main Battle Tank. A framework of metrics was developed for the architect to communicate objectively with stakeholders and respond to challenges raised. These inputs were then encoded as variables in a global Bayesian Belief Network. Using a change propagation algorithm any changes in the probabilities of individual variables would trigger changes throughout the entire network and can be used as informing messages to the stakeholders to reflect the consequences of these changes. Two Bayesian Belief Networks were developed and tested to understand the effectiveness and sensitivities to the variables. The successful development of the Bayesian Belief Network offers technical and organizational benefits to the system architect. From the technical viewpoint, the model benefits include performing system tradeoff studies, iterating the design to incorporate feedback quickly, analyzing the sensitivity and impact of each design change to the overall system, and identifying critical areas to allocate resources. From an organizational process perspective, it enables speedier knowledge transfer in the project, and enables the engineers
 
(cont.) to be knowledgeable about how their localized change could affect other sub-systems.
 
Description
Thesis (S.M.)--Massachusetts Institute of Technology, System Design & Management Program, 2004.
 
Includes bibliographical references (p. 239-240).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/34733
Department
System Design and Management Program.
Publisher
Massachusetts Institute of Technology
Keywords
System Design and Management Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.