MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards a framework for architecting heterogeneous teams of humans and robots for space exploration

Author(s)
Arnold, Julie Ann, S.M. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (9.447Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Jeffrey A. Hoffman and Joseph H. Saleh.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Human-robotic systems will play a critical role in space exploration, should NASA embark on missions to the Moon and Mars. A unified framework to optimally leverage the capabilities of humans and robots in space exploration will be an invaluable tool for mission planning. Although there is a growing body of literature on human robotic interactions (HRI), there is not yet a framework that lends itself both to a formal representation of heterogeneous teams of humans and robots, and to an evaluation of such teams across a series of common, task-based metrics. My objective in this thesis is to lay the foundations of a unified framework for architecting human-robotic systems for optimal task performance given a set of metrics. First, I review literature from different fields including HRI and human-computer interaction, and synthesize multiple considerations for architecting heterogeneous teams of humans and robots. I then present methods to systematically and formally capture the characteristics that describe a human-robotic system to provide a basis for evaluating human-robotic systems against a common set of metrics.
 
(cont.) I propose an analytical formulation of common metrics to guide the design and evaluate the performance of human-robot systems, and I then apply the analytical formulation to a case study of a multi-agent human-robot system developed at NASA. Finally, I discuss directions for further research aimed at developing this framework.
 
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2006.
 
Includes bibliographical references (p. 113-121).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/35583
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.