MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Chemical and Pharmaceutical Engineering (CPE)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Chemical and Pharmaceutical Engineering (CPE)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Micro-porous Paclitaxel-Loaded PLGA Foams -- a New Implant Material for Controlled Release of Chemotherapeutic Agents

Author(s)
Lee, Lai Yeng; Wang, Chi Hwa; Smith, Kenneth A.
Thumbnail
DownloadCPE004.pdf (496.6Kb)
Metadata
Show full item record
Abstract
Supercritical gas foaming using CO₂ was used to fabricate blank poly DL lactide-co-glycolide (PLGA) micro-porous foams. Paclitaxel-loaded PLGA foams were also produced for the first time using a modification of the supercritical gas foaming technique whereby pacltitaxel-loaded PLGA microparticle powders obtained from spray drying was foamed. In this study, it was found that using polymer powders, more compact foams and smaller pores foams may be achieved with lower saturation pressures and time which is due to the much higher surface area to volume ratio of the microparticle powders. Experiments were carried out with varying lactide to glycolide ratio of the copolymer PLGA and it was shown that the pore size, in vitro swelling behavior and drug release profiles may be altered by changing the copolymer composition used. The foams fabricated also have good mechanical strength which makes it suitable to be applied as an implantation material for the post-surgical controlled delivery of chemotherapeutic drugs. The residual organic solvent content of the paclitaxel-foams were well below the allowable limit set by the US Pharmacopeia as shown in the present study. The in vitro release profiles over a period of 5 weeks showed close to linear release.
Date issued
2007-01
URI
http://hdl.handle.net/1721.1/35874
Series/Report no.
Chemical and Pharmaceutical Engineering (CPE)
Keywords
Supercritical Gas Foaming Technique, Poly DL Lactide-Co-Glycolide (PLGA), Micro-porous Foams, Controlled Release, Paclitaxel

Collections
  • Chemical and Pharmaceutical Engineering (CPE)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.