Show simple item record

dc.contributor.advisorJohn M. Essigmann.en_US
dc.contributor.authorNeeley, William Louisen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemistry.en_US
dc.date.accessioned2008-03-26T15:49:36Z
dc.date.available2008-03-26T15:49:36Z
dc.date.copyright2006en_US
dc.date.issued2006en_US
dc.identifier.urihttp://dspace.mit.edu/handle/1721.1/37359en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/37359
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2006.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionVita.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractThe radicals nitric oxide and superoxide are produced endogenously by activated macrophages and neutrophils and combine in a diffusion-limited reaction to form peroxynitrite, a powerful oxidizing and nitrating agent capable of damaging a variety of biomolecules, including DNA. Of the four nucleobases of DNA, guanine has the lowest oxidation potential and thus considerable attention has been given to the study of the oxidation of this base by peroxynitrite. A variety of DNA lesions are generated from guanine including guanidinohydantoin, spiroiminodihydantoin, oxaluric acid, urea, 2-aminoimidazolone, and 5-guanidino-4-nitroimidazole. In order to assess the biological significance and consequences of peroxynitrite-damaged DNA, it is essential that these lesions be characterized for their genotoxic and mutagenic potential. This work focuses on the elucidation of those properties. In the first study, the 2'-deoxynucleoside of 5-guanidino-4-nitroimidazole was chemically synthesized and incorporated into an oligonucleotide by the phosphoramidite method. In the second study, the genotoxic and mutational properties of 2-aminoimidazolone and 5-guanidino-4-nitroimidazole were determined in wild-type uninduced and SOS-induced E. coli.en_US
dc.description.abstract(cont.) In the third study, oxaluric acid was found to hydrolyze to urea in a reaction catalyzed by magnesium cations and bicarbonate. The genotoxic and mutational properties of oxaluric acid and urea were determined in wildtype uninduced and SOS-induced E. coli. In the fourth study, the genotoxic and mutational properties of guanidinohydantoin and spiroiminodihydantoin were determined in wild-type uninduced E. coli. In the fifth study, the genotoxic and mutational properties of guanidinohydantoin, spiroiminodihydantoin, oxaluric acid, urea, 2-aminoimidazolone, and 5-guanidino-4-nitroimidazole were determined in wild-type, polymerase II deficient, polymerase IV deficient, polymerase V deficient, and polymerase II / polymerase IV / polymerase V deficient E. coli under both uninduced and SOS-induced conditions. All of the lesions studied were potent sources of mutations in vivo. Guanidinohydantoin, spiroiminodihydantoin, urea, and 5-guanidino-4-nitroimidazole were significant blocks to replication and were strongly dependent upon induction of the SOS system. Polymerase V was responsible for the majority of translesion synthesis.en_US
dc.description.statementofresponsibilityby William Louis Neeley.en_US
dc.format.extent272 leavesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/37359en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemistry.en_US
dc.titleGenomic consequences of DNA oxidation by peroxynitriteen_US
dc.title.alternativeGenomic consequences of deoxyribonucleic acid oxidation by peroxynitriteen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc70850829en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record