Advanced Search
DSpace@MIT

Online trajectory planning for UAVs using mixed integer linear programming

Research and Teaching Output of the MIT Community

Show simple item record

dc.contributor.advisor Jonathan P. How. en_US
dc.contributor.author Culligan, Kieran Forbes en_US
dc.contributor.other Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. en_US
dc.date.accessioned 2007-07-18T13:14:29Z
dc.date.available 2007-07-18T13:14:29Z
dc.date.copyright 2006 en_US
dc.date.issued 2006 en_US
dc.identifier.uri http://hdl.handle.net/1721.1/37952
dc.description Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2006. en_US
dc.description Includes bibliographical references (p. 95-100). en_US
dc.description.abstract This thesis presents a improved path planner using mixed-integer linear programming (MILP) to solve a receding horizon optimization problem for unmanned aerial vehicles (UAV's). Using MILP, hard constraints for obstacle and multi-vehicle avoidance as well as an approximation of vehicle dynamics are included into the formulation. The complete three dimensional formulation is described. The existing MILP framework has been modified to increase functionality, while also attempting to decrease solution time. A variable time step size, linear interpolation points, and horizon minimization techniques are used to enhance the capability of the online path planner. In this thesis, the concept of variable time steps is extended to the receding horizon, non-iterative MILP formulation. Variable time step sizing allows the simulation horizon time to be lengthened without increasing solve time too dramatically. Linear interpolation points are used to prevent solution trajectories from becoming overly conservative. Horizon minimization decreases solve time by removing unnecessary obstacle constraints from the the problem. en_US
dc.description.abstract (cont.) Computer simulations and test flights on an indoor quadrotor testbed shows that MILP can be used reliably as an online path planner, using a variety of different solution rates. Using the MILP path planner to create a plan ten seconds into the future, the quadrotor can navigate through an obstacle-rich field with MILP solve times under one second. Simple plans in obstacle-spare environments are solved in less than 50ms. A multi-vehicle test is also used to demostrate non-communicating deconfliction trajectory planning using MILP. en_US
dc.description.statementofresponsibility by Kieran Forbes Culligan. en_US
dc.format.extent 100 p. en_US
dc.language.iso eng en_US
dc.publisher Massachusetts Institute of Technology en_US
dc.rights M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. en_US
dc.rights.uri http://dspace.mit.edu/handle/1721.1/7582
dc.subject Aeronautics and Astronautics. en_US
dc.title Online trajectory planning for UAVs using mixed integer linear programming en_US
dc.title.alternative Online trajectory planning for unmanned aerial vehicles using MILP en_US
dc.type Thesis en_US
dc.description.degree S.M. en_US
dc.contributor.department Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. en_US
dc.identifier.oclc 144589286 en_US


Files in this item

Name Size Format Description
144589286-MIT.pdf 8.673Mb PDF Full printable version

This item appears in the following Collection(s)

Show simple item record

MIT-Mirage