Show simple item record

dc.contributor.advisorTimothy M. Swager and Ian W. Hunter.en_US
dc.contributor.authorVandesteeg, Nathan A. (Nathan Alan)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Materials Science and Engineering.en_US
dc.date.accessioned2007-08-29T19:05:01Z
dc.date.available2007-08-29T19:05:01Z
dc.date.copyright2007en_US
dc.date.issued2007en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/38514
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractConducting polymers are known to mechanically respond to electrochemical stimuli and have been utilized as linear actuators. To date, the most successful mechanism for actuation is ionic ingress and egress, though mechanisms based on conformational changes and molecular interactions have also been proposed. In the pursuit of new conducting polymer actuators it is necessary to design, synthesize, and characterize new materials, spanning scientific disciplines from synthetic chemistry to materials and mechanical engineering. As such, the topics of synthesis and characterization of new conducting polymers are discussed, highlighting developments in techniques and instrumentation. Actuation in poly(3,4-ethylenedioxythiophene), or PEDOT, and composites of PEDOT and carbon nanotubes is presented, demonstrating strains of 4.5% and strain rates of 0.2% per second with faster responses generated in carbon nanotube composites. Actuation in poly(3-hexylthiophene) is presented, demonstrating the observation of a novel actuation mechanism relating the potential of the polymer to the mechanical response. Further study of the actuation of polypyrrole at temperatures above 25°C is also discussed, in which response times decrease and magnitudes increase with temperature. Discrete time models of equivalent circuits and diffusion are utilized to predict conducting polymer actuator performance.en_US
dc.description.statementofresponsibilityby Nathan A. Vandesteeg.en_US
dc.format.extent126 leavesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectMaterials Science and Engineering.en_US
dc.titleSynthesis and characterization of conducting polymer actuatorsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc156557861en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record