MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design modeling and fabrication of experimental apparatus for compliant mechanism education kit

Author(s)
Shivers, Sarah E. (Sarah Elizabeth)
Thumbnail
DownloadFull printable version (1.285Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Martin L. Culpepper.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The purpose of this thesis is to design an educational kit to be used to teach practicing engineers about recent developments in the study and design of flexures. Flexure theory can be difficult to explain. This kit is a physical example of the FACT method for designing flexures. The first flexure is a linear motion flexure, which is a familiar design to practicing precision engineers. The second design is a flexure which moves in a screw motion, which has never been built before. The design of the screw flexure uses the FACT method to combine constraints to create a linked linear and rotational motion. The screw flexure is also designed to have a variable pitch, such that it ranges from pure rotational motion to linear motion. This thesis contains the modeling, design, and fabrication process for both the linear and screw flexure. Two working prototypes were manufactured of each flexure. They are assembled on a baseplate and include sensors to measure the motion of each flexure. One kit was used to explain the concepts behind the design of the flexures to two students. They were then able to answer a few questions about the concepts after experimenting with the flexures.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.
 
Includes bibliographical references (p. 37).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/40485
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.