MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigations of the cascade of Langmuir wave turbulence over HAARP Observatory in Gakona, Alaska

Author(s)
Burton, Laura M
Thumbnail
DownloadFull printable version (1.857Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Min-Chang Lee and Richard Temkin.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis investigates the cascade lines from Langmuir wave turbulence as a result of Parametric Decay Instability (PDI) in the ionosphere. This effect is studied using a high-frequency (HF) heater located at the NSF/DoD High Frequency Active Auroral Research Program (HAARP) Observatory in Gakona, Alaska. Measurements were taken remotely in February 2005 and March 2006 in order to focus study on the altitude variation and number of cascade lines. This data was cross-checked with a recently developed theory by Kuo and Lee [2005] citing two processes possible in PDI: resonant decay and non-resonant decay. The non-resonant cascade of Langmuir waves proceeds at the same location and is severely hampered by frequency mismatch effect, because the decay wave is a driven ion mode oscillating at considerably lower frequency than that of the ion acoustic wave. In contrast, the resonant cascade, which takes place at different resonant locations to minimize the frequency mismatch effect, has to overcome the propagation loss of the mother Langmuir wave in each cascade step. It is known, in general, that the resonant cascade process requires less thresholds than those of the non-resonant cascade process. Thorough analysis concludes that resonant decay is the most probably process due to observed altitude variation and number of cascade lines observed.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2007.
 
Includes bibliographical references (leaf 49).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/40907
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.