MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stochastic chaos and thermodynamic phase transitions : theory and Bayesian estimation algorithms

Author(s)
Deng, Zhi-De
Thumbnail
DownloadFull printable version (31.51Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Chi-Sang Poon.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The chaotic behavior of dynamical systems underlies the foundations of statistical mechanics through ergodic theory. This putative connection is made more concrete in Part I of this thesis, where we show how to quantify certain chaotic properties of a system that are of relevance to statistical mechanics and kinetic theory. We consider the motion of a particle trapped in a double-well potential coupled to a noisy environment. By use of the classic Langevin and Fokker-Planck equations, we investigate Kramers' escape rate problem. We show that there is a deep analogy between kinetic rate theory and stochastic chaos, for which we propose a novel definition. In Part II, we develop techniques based on Volterra series modeling and Bayesian non-linear filtering to distinguish between dynamic noise and measurement noise. We quantify how much of the system's ergodic behavior can be attributed to intrinsic deterministic dynamical properties vis-a-vis inevitable extrinsic noise perturbations.
Description
Thesis (M. Eng. and S.B.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.
 
Includes bibliographical references (p. 177-200).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/41649
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.