MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Technology assessment and market analysis of solid state ultracapacitors

Author(s)
Jiang, Zibo
Thumbnail
DownloadFull printable version (4.695Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Yet-Ming Chiang.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This report provides quantitative analysis of Solid State Ultracapacitors (SSUs) from technological and financial perspectives. SSUs are Ultracapacitors with solid electrolytes predicted to have huge application potential as the electrical energy storage device in Hybrid Electrical Vehicles (HEVs) due to the projected high energy density. The potential high energy density of SSUs is achieved through engineering dielectric materials to possess high breakdown voltage and/or DC permittivity. Among the available SSU models, Electrical Energy Storage Units (EESUs) have been reported to possess energy density as high as 280 Wh/kg with the permittivity and breakdown voltage enhancements achieved through engineering composition modified barium titanate powders. Organic Solid State Ultracapacitors (OSSUs) is a proposed concept of SSUs with conductive particle filled polymer systems as the dielectric material to take advantage of the systems' giant permittivity phenomenon reported under AC. However, through experiments and modeling, such giant permittivity is not found under DC and it is thought that the reported AC giant permittivity may be strongly distorted by the eddy current loss in the commonly used equivalent circuit characterization model and therefore does not contribute to the energy density enhancement. It is also found that the geometric dispersion of conductive particles does not contribute to the energy storage capability. Hence, it is concluded that OSSU is not a competitive SSU model. EESU would outperform current batteries in HEV applications both in terms of manufacturing cost and fuel efficiency according to the PHEV performance model.
 
(cont.) It is predicted that a typical EESU PHEV140 midsized sedan, with the estimated cost of $29,000/vehicle and the fuel efficiency of 206 mpg, would become more economically favorable than a conventional vehicle of the same size in five years based on the current energy price. The increase of the energy price will increase the relative performance of EESU PHEVs compared with battery PHEVs. Through a dynamic manufacturing model, it is predicted that the EESUs, if manufactured from 2011, would have an appreciable market share due to its superior product utility, which, in turn, transforms the product competitiveness into the corporate financial profit as soon as the sixth year of operation with 4-5 folds of return on investment in ten years.
 
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007.
 
Includes bibliographical references (p. 90-93).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/42142
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.