Show simple item record

dc.contributor.advisorChristopher B. Burge.en_US
dc.contributor.authorNielsen, Cydney Brookeen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Biology.en_US
dc.date.accessioned2008-11-07T14:12:56Z
dc.date.available2008-11-07T14:12:56Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/42947
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2008.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractThe untranslated region (UTR) at the 30 end of a mammalian mRNA is typically rich with regulatory motifs that influence the stability, localization, translation and other properties of the message. We explored two classes of motifs, microRNA (miRNA) complementary sites and cleavage and polyadenylation (poly(A)) signals, and provide evidence that specific sequence contextual features are important for their recognition. MiRNAs are 22 nt, non-coding RNAs that function as post-transcriptional gene regulators in animals and plants. They typically interact with target mRNAs through base-pairing predominantly between bases 2-8 (the 'seed' region) at the 50 end of the miRNA and complementary sites in the target 30 UTR ('seed matches'). These interactions result in target mRNA translational repression or deadenylation, or both. Through analysis of mRNA expression data following miRNA or siRNA overexpression or inhibition, we uncovered novel targeting determinants that influence mRNA levels. These include the presence of distinct seed match types and sequence context, in particular that increased AU content and conservation were independently associated with greater target down-regulation. Our results demonstrate that mRNA fold change increases multiplicatively (i.e., log-additively) with seed match count. We integrated these features into a target scoring scheme, TargetRank, and demonstrated the effectiveness of our rankings in predicting in vivo target responses. Mammalian genes frequently have multiple, competing poly(A) sites, and the features influencing site selection remain poorly understood. Poly(A) site recognition occurs co-transcriptionally and given that transcription is highly influenced by the tight packaging of genomic DNA into chromatin, we investigated the potential impact of nucleosome positioning on poly(A) site usage. Using recent, public, Illumina sequencing data from human nucleosome boundaries, we found evidence that greater nucleosome density in regions flanking but not overlapping poly(A) sites is associated with more frequent usage.en_US
dc.description.statementofresponsibilityby Cydney Brooke Nielsen.en_US
dc.format.extent196 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiology.en_US
dc.titleMammalian gene regulation through the 3' UTRen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biology
dc.identifier.oclc259233162en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record