Fault-tolerant quantum computer architectures using hierarchies of quantum error-correcting codes
Author(s)
Cross, Andrew W. (Andrew William), 1979-
DownloadFull printable version (24.17Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Isaac L. Chuang.
Terms of use
Metadata
Show full item recordAbstract
Quantum computers have been shown to efficiently solve a class of problems for which no efficient solution is otherwise known. Physical systems can implement quantum computation, but devising realistic schemes is an extremely challenging problem largely due to the effect of noise. A quantum computer that is capable of correctly solving problems more rapidly than modern digital computers requires some use of so-called fault-tolerant components. Code-based fault-tolerance using quantum error-correcting codes is one of the most promising and versatile of the known routes for fault-tolerant quantum computation. This dissertation presents three main, new results about code-based fault-tolerant quantum computer architectures. The first result is a large new family of quantum codes that go beyond stabilizer codes, the most well-studied family of quantum codes. Our new family of codeword stabilized codes contains all known codes with optimal parameters. Furthermore, we show how to systematically find, construct, and understand such codes as a pair of codes: an additive quantum code and a classical (nonlinear) code. Second, we resolve an open question about universality of so-called transversal gates acting on stabilizer codes. Such gates are universal for classical fault-tolerant computation, but they were conjectured to be insufficient for universal fault-tolerant quantum computation. We show that transversal gates have a restricted form and prove that some important families of them cannot be quantum universal. This is strong evidence that so-called quantum software is necessary to achieve universality, and, therefore, fault-tolerant quantum computer architecture is fundamentally different from classical computer architecture. Finally, we partition the fault-tolerant design problem into levels of a hierarchy of concatenated codes and present methods, compatible with rigorous threshold theorems, for numerically evaluating these codes. (cont.) The methods are applied to measure inner error-correcting code performance, as a first step toward elucidation of an effective fault-tolerant quantum computer architecture that uses no more than a physical, inner, and outer level of coding. Of the inner codes, the Golay code gives the highest pseudothreshold of 2 x 10-3. A comparison of logical error rate and overhead shows that the Bacon-Shor codes are competitive with Knill's C₄/C₆ scheme at a base error rate of 10⁻⁴.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008. Includes bibliographical references (p. 221-238).
Date issued
2008Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.