dc.contributor.advisor | John G. Kassakian and Leslie A. Kolodziejski. | en_US |
dc.contributor.author | Jovanovic, Natalija Zorana | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2009-01-30T16:47:35Z | |
dc.date.available | 2009-01-30T16:47:35Z | |
dc.date.copyright | 2008 | en_US |
dc.date.issued | 2008 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/44445 | |
dc.description | Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008. | en_US |
dc.description | Includes bibliographical references (p. 71-74). | en_US |
dc.description.abstract | This research investigates the fabrication, modeling, characterization, and application of tungsten two-dimensional (2D) photonic crystal (PhC) structures as selective emitters and means of achieving higher efficiencies in thermophotovoltaic (TPV) energy conversion systems. Important aspects of the fabrication process are researched, developed, and rigorously characterized, focusing on dimensional reliability, precision, and repeatability of the processes. A major contribution in the form of tungsten reactive ion etch (RIE) characterization is provided with detailed parameters and second-order influences on etch rate, smoothness, and mask erosion. Optical characterization of our prototypes is found to be in excellent agreement with simulation, and has provided an experimental confirmation of selective emitter performance. We show that selective emitters can substantially increase spectral efficiency, providing as much as three times the radiative power density of planar tungsten. We include the first measurement of 96% combined efficiency of a selective emitter and a dielectric stack mirror for TPV system applications. | en_US |
dc.format.extent | 74 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Microstructured tungsten thermophotovoltaic selective emitters c by Natalija (Zorana) Jovanović. | en_US |
dc.type | Thesis | en_US |
dc.description.degree | Sc.D. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 294909669 | en_US |