MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lower bound techniques for data structures

Author(s)
Pǎtraşcu, Mihai
Thumbnail
DownloadFull printable version (12.14Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Erik D. Demaine.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We describe new techniques for proving lower bounds on data-structure problems, with the following broad consequences: * the first [omega](lg n) lower bound for any dynamic problem, improving on a bound that had been standing since 1989; * for static data structures, the first separation between linear and polynomial space. Specifically, for some problems that have constant query time when polynomial space is allowed, we can show [omega](lg n/ lg lg n) bounds when the space is O(n - polylog n). Using these techniques, we analyze a variety of central data-structure problems, and obtain improved lower bounds for the following: * the partial-sums problem (a fundamental application of augmented binary search trees); * the predecessor problem (which is equivalent to IP lookup in Internet routers); * dynamic trees and dynamic connectivity; * orthogonal range stabbing. * orthogonal range counting, and orthogonal range reporting; * the partial match problem (searching with wild-cards); * (1 + [epsilon])-approximate near neighbor on the hypercube; * approximate nearest neighbor in the l[infinity] metric. Our new techniques lead to surprisingly non-technical proofs. For several problems, we obtain simpler proofs for bounds that were already known.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
Includes bibliographical references (p. 135-143).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45866
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.