MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The overconvergent de Rham-Witt complex

Author(s)
Davis, Christopher (Christopher James)
Thumbnail
DownloadFull printable version (3.918Mb)
Alternative title
Over convergent de Rham-Witt complex
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Kiran S. Kedlaya.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We define the overconvergent de Rham-Witt complex ... for a smooth affine variety over a perfect field in characteristic p. We show that, after tensoring with Q, its cohomology agrees with Monsky-Washnitzer cohomology. If dim C < p, we have an isomorphism integrally. One advantage of our construction is that it does not involve a choice of lift to characteristic zero. To prove that the cohomology groups are the same, we first define a comparison map ... (See Section 4.1 for the notation.) We cover our smooth affine C with affines B each of which is finite, tale over a localization of a polynomial algebra. For these particular affines, we decompose ... into an integral part and a fractional part and then show that the integral part is isomorphic to the Monsky-Washnitzer complex and that the fractional part is acyclic. We deduce our result from a homotopy argument and the fact that our complex is a Zariski sheaf with sheaf cohomology equal to zero in positive degrees. (For the latter, we lift the proof from [4] and include it as an appendix.) We end with two chapters featuring independent results. In the first, we reinterpret several rings from p-adic Hodge theory in such a way that they admit analogues which use big Witt vectors instead of p-typical Witt vectors. In this generalization we check that several familiar properties continue to be valid. In the second, we offer a proof that the Frobenius map on W(...) is not surjective for p > 2.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2009.
 
Includes bibliographical references (p. 83-84).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/50593
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.