MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of wind turbines with Ultra-High Performance Concrete

Author(s)
Jammes, François-Xavier
Thumbnail
DownloadFull printable version (49.65Mb)
Alternative title
Design of wind turbines with UHPC
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Franz-Josef Ulm.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Ultra-High Performance Concrete (UHPC) has proven an asset for bridge design as it significantly reduces costs. However, UHPC has not been applied yet to wind turbine technology. Design codes do not propose any recommendations or guidance for the towers, thus encouraging the engineer to use less effective traditional materials like steel. The purpose of this thesis is to propose an efficient way to design UHPC wind turbines. First is explained the strategy to retain an optimal design. Then, the comparison with a similar steel model demonstrates that UHPC is both an economical and sustainable design solution for towers. This work is based on a combination of the UHPC 1D model developed at MIT and the interim recommendations provided by Association Franqaise de Genie Civil. The expression of the design loads and the resistant loads for a UHPC circular hollow section are presented based on available design codes. Then, the optimization process based on the previous model is established. It is achieved using two programs in order to satisfy both the Service Limit State (SLS) and the Ultimate Limit State (ULS). The best design is obtained for a SLS criteria deflection of L/800. The cost of material is reduced by a factor between 2 and 3 in comparison with traditional steel. All of this confirms that UHPC could be an innovative engineering solution for the realization of new wind turbine towers.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2009.
 
Includes bibliographical references (leaves 72-73).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/51574
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.