Show simple item record

dc.contributor.advisorVladimir Bulović.en_US
dc.contributor.authorBradley, Michael Scotten_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2010-03-25T15:13:20Z
dc.date.available2010-03-25T15:13:20Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/53196
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 143-159).en_US
dc.description.abstractResearch efforts in solution-based dye lasers and organic light-emitting devices (OLEDs) have led to advances in materials engineering and fabrication technology, propelling the field of organic solid-state photonics. Active areas of photonic research in organic systems include solid-state lasers (in both VCSEL and DFB form factor), low-threshold optical switches, and photodetectors. In all of these areas, thin films of "Jelley aggregates," or J aggregates, offer a promising materials platform thanks to their narrow linewidth and high oscillator strength at room temperature, properties resulting from delocalization of excitations across multiple strongly-coupled molecules. By placing these films in an optical microcavity, the aggregates exhibit additional strong-coupling to the cavity electric field, creating light-matter quasi-particles known as exciton-polaritons, even at room temperature. In this thesis, I discuss my research on the properties of J-aggregate thin films and on advancing the device and materials engineering of strongly-coupled devices based on J-aggregate thin films to the level of those in inorganic semiconductor systems. Exciton-polariton systems have been extensively studied at cryogenic temperatures in II-VI and III-V semiconductor quantum well systems in the past two decades as potential low-threshold VCSELs.en_US
dc.description.abstract(cont.) J-aggregate-based exciton-polaritons systems, however, offer many device and engineering challenges, including: understanding the role of inhomogeneous vs. homogeneous broadening in the J-aggregate optical response, fabricating higher-quality microcavities with the ability to pump the polaritons at high intensities, and lateral patterning on the single-micron scale of organic microcavities. These topics are addressed and the outlook of organic exciton-polariton device research discussed.en_US
dc.description.statementofresponsibilityby M. Scott Bradley.en_US
dc.format.extent159 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleEngineering J-aggregate cavity exciton-polariton devicesen_US
dc.title.alternativeEngineering Jelley-aggregate cavity exciton-polariton devicesen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc526668809en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record