Show simple item record

dc.contributor.advisorSidney Yip.en_US
dc.contributor.authorLau, Timothy Tin-Ming, 1984-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Materials Science and Engineering.en_US
dc.date.accessioned2010-03-25T15:19:46Z
dc.date.available2010-03-25T15:19:46Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/53242
dc.descriptionThesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2009.en_US
dc.descriptionVita. Cataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 99-111).en_US
dc.description.abstractThe ability to investigate materials systems at the resolution of individual atoms makes computational simulations a powerful tool for the study of materials phenomena. However, microstructural evolution in complex materials is only meaningfully characterized in laboratory or industry applications by deformation rate and relevant rate coefficients, quantities that require sampling over a timescale too large for traditional atomistic methods to probe. New methods and techniques have to be developed in order to obtain useful information of rate from atomistic simulations. In this thesis, we explore a set of four problems, related to two long-timescale microstructural phenomena, creep and oxidation, and use a variety of atomistic methods appropriate to each problem to demonstrate the techniques of obtaining rate information. Creep due to vacancy-driven dislocation climb critically depends on the movement of the vacancies in the bulk towards dislocation cores, and for the first contribution of the thesis we investigate the influence of carbon solute atoms on vacancy diffusion pathways in bulk BCC Fe. Using these results, we draw explanations of the trends of the experimentally-observed rate of creep. It is well-known that vacancy energetics vary with distance from dislocation cores due to the dislocation strain field, but the effect this has on creep by the dislocation climb mechanism is not well understood. In the second contribution of the thesis, we present an investigation of the vacancy-dislocation interaction of BCC Fe.en_US
dc.description.abstract(cont.) By obtaining the details of the unit processes of vacancy migration around a dislocation core and formulating this information appropriately for numerical techniques based on transition-state theory, we enable the calculation of the dislocation climb rate with full atomistic detail. In the oxidation of metals, the transport of cations through the surface oxide film governs the overall material degradation. In the third contribution of the thesis, we present calculations of the energetics of defect formation and migration in nonstoichiometric Fe3604 spinel, which is closely related to the oxide film on Fe. We provide an explanation of experimental integral measurements of diffusion rate in a mechanistic, unit-process way. Creep of nanocrystalline materials is a new area of interest as fabrication techniques begin to impinge on this lengthscale; nonetheless, this phenomenon is not well understood and existing computational studies all involve unrealistic thermal or mechanical loading conditions. In the last contribution of the thesis, we present an investigation of the creep of Fe nanocrystals, employing a novel method of activating states to directly calculate a rate. We reach a rate regime that is inaccessible by traditional methods as well as identify some of the relevant unit processes in this type of creep. The rates of these slow dynamics phenomena are all investigated on the basis of their atomistic unit processes. However, there are differences in how information of the unit processes is obtained from atomistic calculations and in how the properties of these unit processes are subsequently used to understand the overall rate.en_US
dc.description.abstract(cont.) That different investigation approaches are needed is a direct result of the variation in the complexity of the microstructures, the number and predictability of atomic transition mechanisms, and the depth of existing experimental knowledge. These four studies therefore represent distinct, but complementary, challenges within the common theme of rate calculation. We conclude the thesis with an appraisal of the types of challenges encountered and with an evaluation of the approaches we took to the problems.en_US
dc.description.statementofresponsibilityby Timothy Tin-Ming Lau.en_US
dc.format.extent112 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleAtomistic calculations of rate of long-timescale microstructural evolutionen_US
dc.typeThesisen_US
dc.description.degreeSc.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc535849094en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record