Show simple item record

dc.contributor.advisorLorna J. Gibson.en_US
dc.contributor.authorKanungo, Biraja Prasad, 1980-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Materials Science and Engineering.en_US
dc.date.accessioned2010-03-25T15:20:11Z
dc.date.available2010-03-25T15:20:11Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/53245
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2009.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 219-231).en_US
dc.description.abstractCollagen-glycosaminoglycan (CG) scaffolds for the regeneration of skin and nerve have previously been fabricated by freeze-drying a slurry containing a co-precipitate of collagen and glycosaminoglycan. Recently, mineralized collagen-glycosaminoglycan (MCG) scaffolds for bone regeneration have been developed by freeze-drying a slurry containing a co-precipitate of calcium phosphate, collagen and glycosaminoglycan. Bi-layer scaffolds with CG and MCG layers have been developed for cartilage-bone joint regeneration. The mechanical properties (Young's modulus and strength) of scaffolds are critical for handling during surgery as well as for cell differentiation. The mechanical properties of the MCG scaffolds are low in the dry state (e.g. they can be crushed under hard thumb pressure) as well as in the hydrated state (e.g. they do not have the optimal modulus for mesenchymal stem cells (MSC) to differentiate into bone cells). In addition, there is interest in extending the application of CG scaffolds to tendon and ligament, which carry significant mechanical loads. This thesis aims to improve the mechanical properties of the both CG and MCG scaffolds and to characterize their microstructure and mechanical properties. Models for cellular solids suggest that the overall mechanical properties of the scaffold can be increased by either increasing the mechanical properties of the solid from which the scaffold is made or by increasing the relative density of the scaffold. In an attempt to increase the solid properties, the MCG scaffolds with increasing mineral content were fabricated.en_US
dc.description.abstract(cont.) The mechanical properties were lower for the more highly mineralized scaffolds as a result of an increase in the number of defects such as cracked and disconnected walls. Next, we attempted to increase the mechanical properties by increasing the relative density of the MCG scaffolds. The volume fraction of solids in the slurry was increased by a vacuum-filtration technique. The slurry was then freeze-dried in the conventional manner to produce scaffolds with increased relative densities. Increasing the relative density by a factor of 3 increased the dry Young's modulus and crushing strength roughly by 9 and 7 times, respectively, allowing the dry scaffolds to withstand hard thumb pressure. The Young's modulus for the densest scaffold in the hydrated state was in the optimum range for MSC to differentiate into bone cells. Further, we attempted to improve the mechanical properties of the CG scaffold using the same technique. We were able to achieve an increase in its tensile Young's modulus in the dry state by a factor of aboutl0 times. Finally, the fraction of MC3T3 cells attaching to the CG scaffolds was found to increase linearly with the specific surface area of the scaffold, or with the number of binding sites available for cell attachment.en_US
dc.description.statementofresponsibilityby Biraja P. Kanungo.en_US
dc.format.extent231 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleMechanical properties of collagen-based scaffolds for tissue regenerationen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc537575746en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record