Show simple item record

dc.contributor.advisorKarl K. Berggren.en_US
dc.contributor.authorCord, Bryan M. (Bryan Michael), 1980-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2010-03-25T15:23:26Z
dc.date.available2010-03-25T15:23:26Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/53267
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 165-174).en_US
dc.description.abstractAchieving the highest possible resolution using scanning-electron-beam lithography (SEBL) has become an increasingly urgent problem in recent years, as advances in various nanotechnology applications have driven demand for feature sizes well into the sub-10-nm domain. While SEBL has the highest resolution of nearly any conventional patterning technique available, reliably defining features at these length scales has been a challenge, as well as an interesting scientific problem. In this work I have investigated, both theoretically and experimentally, many of the factors that limit SEBL resolution and attempted to understand and minimize their influence on the process. This includes resist development, where we have thoroughly characterized the temperature dependence of poly(methylmethacrylate) (PMMA) resist contrast and used the results to create transferable patterns smaller than nearly any published results to date with this resist chemistry. We have also examined the process of electron-beam exposure and attempted to characterize the various factors that affect the way energy is distributed in the resist by the beam, using theoretical arguments, Monte Carlo simulations, and experimental data. We have used the results of these investigations to create some of the smallest structures reported to date, using hydrogen silsesquioxane (HSQ) resist. Finally, we have applied some of the previously-gained knowledge to the design of a unique bilayer process for patterning high-resolution metal structures using evaporation and liftoff, while simultaneously developing a broadly-useful new model for the kinetics of resist development.en_US
dc.description.statementofresponsibilityby Bryan M. Cord.en_US
dc.format.extent184 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAchieving sub-10-nm resolution using scanning electron beam lithographyen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc547103208en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record