MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Many-body processes in the photophysics of colloidal semiconductor nanocrystals

Author(s)
Nair, Gautham Padmanabhan
Thumbnail
DownloadFull printable version (1.592Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemistry.
Advisor
Moungi G. Bawendi.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this work we have experimentally studied several aspects of two Coulomb processes that change the number of electrons and holes in colloidal semiconductor nanocrystals (NCs). Carrier Multiplication (CM) is the production of additional electron-hole pairs by collision of a highly excited carrier with valence electrons. Efficient CM would improve the performance of solar energy conversion devices, but it is weak in the bulk. Recent reports by several groups suggested highly efficient CM in semi-conductor NCs. We describe here our assessment of CM using transient photoluminescence in CdSe and lead chalcogenide NCs. Biexciton radiative and nonradiative rates were determined. In our study, no detectable CM was found in CdSe NCs photoexcited at a photon energy of up to 5.9 eV, and the CM yields observed for PbSe NCs at 3.1 eV were found consistent with bulk values. Reasons for the strong disagreement with prior measurements are discussed, and the low yields are theoretically accounted for. The second part of the thesis describes two studies of the "Auger" nonradiative recombination process whereby an electron-hole pair recombines while transferring its energy to a third particle. This mechanism is responsible for the short multiexciton lifetimes in NCs. In one study, we demonstrate a direct method for determining biexciton quantum yields in single nanocrystals by photon cross-correlation (antibunching) measurements. We find significant inhomogeneity in these values, indicating a previously obscured variation in Auger recombination rates.
 
(cont.) Another set of experiments tests the conventional charging model of NC fluorescence intermittency ("blinking") which attributes off-state quenching to Auger decay, by studying single NCs with relatively long multiexciton Auger lifetimes. We find that off-state exciton quantum yields are significantly lower than the quantum yield of a biexciton and we demonstrate that multiexciton emission also shows strong intermittency. Both of these findings contradict the standard charging model. Alternatives are discussed.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2009.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Vita. Cataloged from student submitted PDF version of thesis.
 
Includes bibliographical references (p. 135-143).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/54219
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.