Show simple item record

dc.contributor.advisorGerbrand Ceder.en_US
dc.contributor.authorTibbetts, Kevin (Kevin Joseph)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Materials Science and Engineering.en_US
dc.date.accessioned2010-04-28T17:04:26Z
dc.date.available2010-04-28T17:04:26Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/54579
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2009.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 115-126).en_US
dc.description.abstractThe exact structure of layered inorganic nanotubes is difficult to determine, but this information is vital to using atomistic calculations to predict nanotube properties. A multi-walled nanotube with a circular cross section will have either a mostly incoherent interface or a large amount of tensile strain to accommodate a coherent interface, but a polygonal cross section could result in a coherent interface with considerably less strain. An energy component model is parameterized with atomistic calculations to compare nanotubes with a circular and polygonal cross section. The model shows that for TiS2 nanotubes with some chiralities the radius at which a polygonal shape becomes energetically favorable is approximately 15 A. Due to the higher strain energy and lower interfacial energy the critical radius for polygonal formation of MoS2 nanotubes is 36 A. Both of these values are below the typical radius of TiS2 and MoS 2 nanotubes seen experimentally, indicating that for certain chiralities polygonal nanotubes should form. We also investigate the potential of inorganic nanotubes as energy storage materials. First principles calculations on curved surfaces and distorted slabs are used to analyze the effect of curvature and stacking on voltage and diffusion properties. The effect is qualitatively and quantitatively dependent on the material and structure. The Li voltage on the surface of TiS2 nanotubes decreases with a decreasing radius whether lithium is inside or outside of the nanotube. On the surface of MoS2, the voltage decreases with decreasing radius when Li is inside the tube, but increases with decreasing radius when Li is outside the tube.en_US
dc.description.abstract(cont.) The activation barrier for lithium diffusion increases with decreasing radius whether Li is outside or inside the nanotube while the barrier decreases in either case for MoS 2. When the stacking is disordered the lithium voltage and activation barrier between TiS2 layers decreases, although the decrease in voltage is not as large as the decrease in activation barrier because the stable lithium site changes from the octahedral site to the tetrahedral site at some stacking arrangements.en_US
dc.description.statementofresponsibilityby Kevin Tibbetts.en_US
dc.format.extent126 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleFirst principles study of structure and lithium storage in inorganic nanotubesen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc568220910en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record