Show simple item record

dc.contributor.advisorFranz X. Kärtner.en_US
dc.contributor.authorChen, Jian, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2010-05-25T20:41:09Z
dc.date.available2010-05-25T20:41:09Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/55093
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 117-121).en_US
dc.description.abstractThis thesis reports work in high repetition rate femtosecond fiber lasers. Driven by the applications including optical arbitrary waveform generation, high speed optical sampling, frequency metrology, and timing and frequency distribution via fiber links, low noise fiber laser sources operating at multi-gigahertz repetition rates are developed systematically. A 200 MHz fundamentally mode-locked soliton laser and a 200 MHz fundamentally mode-locked similariton laser are first developed. Intra-cavity soliton formation is recognized as the optimum route towards achieving high fundamental repetition rates compact lasers, under the limitation of realistically available pump power. A 3 GHz fundamentally mode-locked femtosecond fiber laser is developed and verifies the soliton formation theory. Techniques in external cavity repetition rate multiplications are also discussed. A theoretical model that relates the repetition rate of the soliton laser and its other physical measurable parameters is developed to guide further high repetition rate laser development.en_US
dc.description.statementofresponsibilityby Jian Chen.en_US
dc.format.extent121 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleHigh repetition rate fiber lasersen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc587672065en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record