Show simple item record

dc.contributor.authorRichards, Whitmanen_US
dc.contributor.authorKoenderink, Jan J.en_US
dc.contributor.authorHoffman, D.D.en_US
dc.date.accessioned2004-10-01T20:17:08Z
dc.date.available2004-10-01T20:17:08Z
dc.date.issued1985-04-01en_US
dc.identifier.otherAIM-840en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/5613
dc.description.abstractAll plane curves can be described at an abstract level by a sequence of five primitive elemental shapes, called "condons", which capture the sequential relations between the singular points of curvature. The condon description provides a basis for enumerating all smooth 2D curves. Let each of these smooth plane be considered as the si lhouette of an opaque 3D object. Clearly an in finity of 3D objects can generate any one of ou r "condon" silhouettes. How then can we p redict which 3D object corresponds to a g iven 2D silhouette? To restrict the infinity of choices, we impose three mathematical properties of smooth surfaces plus one simple viewing constraint. The constraint is an extension of the notion of general position, and seems to drive our preferred inferences of 3D shapes, given only the 2D contour.en_US
dc.format.extent19 p.en_US
dc.format.extent3136972 bytes
dc.format.extent2443128 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesAIM-840en_US
dc.subjectvisionen_US
dc.subjectrecognitionen_US
dc.subjectvisual representationen_US
dc.subjectobject perceptionen_US
dc.subjectsfigure-grounden_US
dc.subject3-D shapeen_US
dc.titleInferring 3D Shapes from 2D Codonsen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record