Show simple item record

dc.contributor.advisorSeth Teller.en_US
dc.contributor.authorHuang, Albert Shuyuen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2010-08-26T15:19:27Z
dc.date.available2010-08-26T15:19:27Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/57535
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 109-114).en_US
dc.description.abstractAutonomous ground vehicles, or self-driving cars, require a high level of situational awareness in order to operate safely and eciently in real-world conditions. A system able to quickly and reliably estimate the location of the roadway and its lanes based upon local sensor data would be a valuable asset both to fully autonomous vehicles as well as driver assistance technologies. To be most useful, the system must accommodate a variety of roadways, a range of weather and lighting conditions, and highly dynamic scenes with other vehicles and moving objects. Lane estimation can be modeled as a curve estimation problem, where sensor data provides partial and noisy observations of curves. The number of curves to estimate may be initially unknown and many of the observations may be outliers and false detections (e.g., due to tree shadows or lens are). The challenge is to detect lanes when and where they exist, and to update the lane estimates as new observations are received. This thesis describes algorithms for feature detection and curve estimation, as well as a novel curve representation that permits fast and ecient estimation while rejecting outliers. Locally observed road paint and curb features are fused together in a lane estimation framework that detects and estimates all nearby travel lanes.en_US
dc.description.abstract(cont.) The system handles roads with complex geometries and makes no assumptions about the position and orientation of the vehicle with respect to the roadway. Early versions of these algorithms successfully guided a fully autonomous Land Rover LR3 through the 2007 DARPA Urban Challenge, a 90km urban race course, at speeds up to 40 km/h amidst moving traffic. We evaluate these and subsequent versions with a ground truth dataset containing manually labeled lane geometries for every moment of vehicle travel in two large and diverse datasets that include more than 300,000 images and 44km of roadway. The results illustrate the capabilities of our algorithms for robust lane estimation in the face of challenging conditions and unknown roadways.en_US
dc.description.statementofresponsibilityby Albert S. Huang.en_US
dc.format.extent114 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleLane estimation for autonomous vehicles using vision and LIDARen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc631212135en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record