Show simple item record

dc.contributor.advisorRonald R. Parker.en_US
dc.contributor.authorWallace, Gregory Men_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Nuclear Science and Engineering.en_US
dc.date.accessioned2010-08-30T14:40:31Z
dc.date.available2010-08-30T14:40:31Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/57694
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 237-245).en_US
dc.description.abstractThe goal of the Lower Hybrid Current Drive (LHCD) system on the Alcator C-Mod tokamak is to investigate current profile control under plasma conditions relevant to future devices such as ITER and DEMO. This thesis addresses the behavior of Lower Hybrid (LH) waves in the edge and Scrape Off Layer (SOL) of Alcator C-Mod, a compact, high field, high density, diverted tokamak. The results of coupling experiments over a range of plasma parameters in both Land H-mode plasmas are presented. Experimental observations suggest that power absorption in the SOL (from both Ion Cyclotron Heating and LHCD sources) modifies the density profile in the vicinity of the LH launcher, thereby affecting the coupling of LH waves. An analysis of the damage sustained by the LH launcher also shows absorption of the LH waves in the SOL near the antenna. Estimates of the heat flux sustained by the antenna during high power LHCD are in agreement with measurements of the density and temperature increase on flux tubes intersecting the antenna. Power absorption due to high parallel refractive index modes and collisional absorption are not sufficient to explain the increase in density and temperature of the plasma in front of the antenna. Experimental observations of the LHCD "density limit" for C-Mod are presented.en_US
dc.description.abstract(cont.) Bremsstrahlung emission and relativistic electron cyclotron emission from fast electrons in the core plasma drop suddenly above line averaged densities of 10 20 m -3 , well below the previously observed density limit. These experimental data are compared to both conventional modeling, which gives poor agreement with experiment above the density limit, and a model including edge collisional absorption, which dramatically improves agreement with experiment above the density limit. Combined together, these results show that strong absorption of LH waves in the SOL is possible on a high density tokamak. The paradigm of computationally treating the plasma core and edge as two separate regions with no or weak interaction fails when compared with the C-Mod results. These observations have spurred a shift towards simulating the core and SOL plasma together in predictive simulations of LHCD.en_US
dc.description.statementofresponsibilityby Gregory M. Wallace.en_US
dc.format.extent245 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectNuclear Science and Engineering.en_US
dc.titleBehavior of lower hybrid waves in the scrape off layer of a diverted tokamaken_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineering
dc.identifier.oclc641236096en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record