Show simple item record

dc.contributor.advisorBruce R. Zetter and Robert S. Langer.en_US
dc.contributor.authorMu, Chunyao Jennyen_US
dc.contributor.otherHarvard University--MIT Division of Health Sciences and Technology.en_US
dc.date.accessioned2010-08-31T14:38:34Z
dc.date.available2010-08-31T14:38:34Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/57782
dc.descriptionThesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 131-147).en_US
dc.description.abstractProstate cancer persists as a major public health issue in the United States and remains the second leading cause of cancer death in men. Early detection and disease monitoring in prostate cancer can significantly improve a patient's prognosis. The advent of prostate-specific antigen (PSA) screening has allowed physicians to monitor the levels of a specific protein, or biomarker, as a correlate of disease progression. This thesis focuses on optical detection of prostate tumors through the development of biomarker-targeted molecular imaging probes. In the first part of this work, engineered human prostate cancer cell lines were developed and characterized to determine the dynamics of post-translational processing for PSA proteolytic activity and to establish potential small animal models for validating protease-activatable imaging probes. Target-activatable gold nanoparticle imaging probes that can be self-assembled in a one-step reaction were then developed to detect biomarker proteases in vivo. The activated probes demonstrated a 5 to 8-fold fluorescence signal amplification, extended circulation time, and high image contrast in a mouse tumor model. Lastly, differential phage display selection was performed on human prostate cancer cells with low and high metastatic potentials to (1) identify cell-surface biomarkers specific to highly aggressive tumors, and (2) develop molecular imaging probes for detecting prostate cancer metastases.en_US
dc.description.abstract(cont.) One peptide, LN4P-1, demonstrated preferential binding to highly metastatic PC3M-LN4 cells and identified a highly expressed protein on their cell surface. Fluorescently labeled LN4P-1 was able to detect PC3MLN4 tumors in vivo. In summary, this thesis outlines the development of molecular imaging probes for targeting tumors both at the primary site, through evaluation of biomarker protease activity, and at the metastatic site, through affinity-based analysis of biomarker expression.en_US
dc.description.statementofresponsibilityby Chunyao Jenny Mu.en_US
dc.format.extent147 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectHarvard University--MIT Division of Health Sciences and Technology.en_US
dc.titleNanomaterials for the detection of cancer-associated biomarkersen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technology
dc.identifier.oclc636045553en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record