MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel nanoscale delivery system for spatio-temporal delivery of combination chemotherapy

Author(s)
Eavarone, David A. (David Alan)
Thumbnail
DownloadFull printable version (10.08Mb)
Other Contributors
Harvard University--MIT Division of Health Sciences and Technology.
Advisor
Ram Sasisekharan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In the continuing search for effective treatments for cancer, the emerging model is the combination of traditional chemotherapy with anti-angiogenesis agents that inhibit blood vessel growth. However, the implementation of this strategy has faced two major obstacles. First, the long-term shutdown of tumor blood vessels by the anti-angiogenesis agent can prevent the tumor from receiving a therapeutic concentration of the chemotherapy agent. Second, inhibiting blood supply drives the formation of intra-tumoral hypoxia, or a lack of oxygen, which has been correlated with increased tumor invasiveness and resistance to chemotherapy. In this thesis we report the disease-driven engineering of a drug delivery system, a 'nanocell', which overcomes these barriers unique to solid tumors. The nanocell comprises a nuclear nanoparticle encapsulated within a lipid membrane and is preferentially taken up by the tumor. The nanocell delivers a temporal release of two drugs within the tumor core: the outer lipid envelope first releases an anti-angiogenesis agent, causing a vascular shutdown; the inner nanoparticle, which is trapped inside the tumor, then releases a chemotherapy agent. This focal release within the tumor targets cells most at risk for hypoxia and results in improved therapeutic index with reduced toxicity. The technology can be extended to additional agents, so as to target multiple signaling pathways or distinct tumor compartments, enabling the model of an 'integrative' approach in cancer therapy.
 
(cont.) In the second part of the thesis we report new tools for the optimization of nanocell formulations. We present a new, three-dimensional, voxel-based computational model for Monte Carlo simulations of nanoparticle delivery systems that enables direct investigation of the entire vehicle during particle degradation and drug release. Use of this model in combination with emerging mechanistic understandings of nanoparticle drug release will facilitate optimization of nanocell combination therapy release profiles. We additionally report the generation and characterization of a set of carbohydrate-based chemotherapeutic agents that have the potential for use in nanocells as reduced toxicity alternatives to traditional chemotherapy agents.
 
Description
Thesis (Ph. D. in Biomedical Engineering)--Harvard-MIT Division of Health Sciences and Technology, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/58393
Department
Harvard University--MIT Division of Health Sciences and Technology
Publisher
Massachusetts Institute of Technology
Keywords
Harvard University--MIT Division of Health Sciences and Technology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.