Show simple item record

dc.contributor.advisorRamesh Raskar.en_US
dc.contributor.authorKirmani, Ahmed (Ghulam Ahmed)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Architecture. Program in Media Arts and Sciences.en_US
dc.date.accessioned2010-09-03T18:36:24Z
dc.date.available2010-09-03T18:36:24Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/58402
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 59-64).en_US
dc.description.abstractThis thesis proposes a novel framework called transient imaging for image formation and scene understanding through impulse illumination and time images. Using time-of-flight cameras and multi-path analysis of global light transport, we pioneer new algorithms and systems for scene understanding through time images. We demonstrate that our proposed transient imaging framework provides opportunities to accomplish tasks that are well beyond the reach of existing imaging technology. For example, one can infer the geometry of not only the visible but also the hidden parts of a scene, enabling us to look around corners. Traditional cameras estimate intensity per pixel I(x, y). Our transient imaging camera prototype captures a 3D time-image I(x, y, t) for each pixel and uses an ultra-short pulse laser for flash illumination. Emerging technologies are supporting cameras with a temporal-profile per pixel at picosecond resolution, allowing us to capture an ultra-high speed time-image. This time-image contains the time profile of irradiance at a sensor pixel. The speed of light is relevant at these imaging time scales, and the transient properties of light transport come into play. In particular we furnish a novel framework for reconstructing scene geometry of hidden planar scenes. We experimentally corroborated our theory with free space hardware experiments using a femtosecond laser and a picosecond accurate sensing device. The ability to infer the structure of hidden scene elements, unobservable by both the camera and illumination source, will create a range of new computer vision opportunities.en_US
dc.description.statementofresponsibilityby Ahmed Kirmani.en_US
dc.format.extent64 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectArchitecture. Program in Media Arts and Sciences.en_US
dc.titleFemtosecond Transient Imagingen_US
dc.title.alternativeFemtosecond time resolved computational imagingen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)
dc.identifier.oclc656284100en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record