Show simple item record

dc.contributor.advisorSteven G. Johnson and Yoel Fink.en_US
dc.contributor.authorOskooi, Ardavan Fen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Materials Science and Engineering.en_US
dc.date.accessioned2010-10-08T20:38:40Z
dc.date.available2010-10-08T20:38:40Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/59008
dc.descriptionThesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2010.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 191-209).en_US
dc.description.abstractThe versatility of computational design as an alternative to design by nanofabrication has made computers a reliable design tool in nanophotonics. Given that almost any 2d pattern can be fabricated at infrared length scales, there exists a large number of degrees of freedom in nanophotonic device design. However current designs are adhoc and could potentially benefit from optimization but there are several outstanding issues regarding PDE-based optimization for electromagnetism that must first be addressed: continuously and accurately deforming geometric objects represented on a discrete uniform grid while avoiding staircasing effects, reducing the computational expense of large simulations while improving accuracy, resolving the breakdown of standard absorbing boundary layers for important problems, finding robust designs that are impervious to small perturbations, and finally distinguishing global from local minima. We address each of these issues in turn by developing novel subpixel smoothing methods that markedly improve the accuracy of simulations, demonstrate the failure of perfectly matched layers (PML) in several important cases and propose a workaround, develop a simple procedure to determine the validity of any PML implementation and incorporate these and other enhancements into a flexible, free software package for electromagnetic simulations based on the finite-difference time-domain (FDTD) method. Next we investigate two classes of design problems in nanophotonics. The first involves finding cladding structures for holey photoniccrystal fibers at low-index contrasts that permit a larger class of materials to be used in the fabrication process. The second is the development of adiabatic tapers for coupling to slow-light modes of photonic-crystal waveguides that are insensitive to manufacturing and operational variability.en_US
dc.description.statementofresponsibilityby Ardavan Oskooi.en_US
dc.format.extent209 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleComputation & design for nanophotonicsen_US
dc.title.alternativeComputation and design for nanophotonicsen_US
dc.typeThesisen_US
dc.description.degreeSc.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc666878277en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record