MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Developing a framework for dependable demand forecasts in the consumer packaged goods industry

Author(s)
Uriarte, Daniel Antonio
Thumbnail
DownloadFull printable version (17.54Mb)
Other Contributors
Leaders for Global Operations Program.
Advisor
Chris Caplice and Donald B. Rosenfield.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
As a consumer packaged goods company, "Company X" manufactures products "make-to-stock"; therefore, having reliable demand forecasts is fundamental for successful planning and execution. Not isolated to "Company X" or to the CPG industry, current global economic conditions have forced companies to seek increased cash flows as a method for weathering this financially difficult period. As a result, many organizations are pursuing improvements in demand forecasting and planning methodologies as a precursor to inventory optimization and to further liquidity positions. This thesis attempts to improve forecasting and planning processes by developing a framework that focuses on four general components identified as key for success by experts and practitioners. In addition, this thesis explores these components while utilizing "Company X" as the case study for improvement. The four forecasting and planning components explored at "Company X" include Data Treatment, Forecast Models, Planning Process, and Organizational Behavior. In the Data Treatment section, we present implications of data aggregation in forecasting and planning activities, as well as provide a methodology to segment SKU's for prioritization during forecasting and planning. While in the Forecast Models section, we explore various forecasting models applied during different stages of the product lifecycle, and utilize these models under "least error" selection with sales data at different levels of aggregation to determine which combination results in the most accurate forecast. Moreover, in the Planning Process section, we explore the Sales and Operations Planning methodology, and provide a set of best practices to design a planning process that meets the requirements of "Company X". Lastly, in the Organizational Behavior section, we depict the "Company X's" planning process and organization, and highlight some of the behaviors typically observed during forecasting and planning activities. Although most of the proposed components provided forecasting and planning improvements over the legacy method, not all of these were implemented at "Company X". Nevertheless, the implemented improvements provided a forecast error reduction from 17% to 10% over the life of the project. However, these improvements were not equal for all SKU segments, as B segment SKU's, or medium criticality products, benefited the most from the execution of this project.
Description
Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division; in conjunction with the Leaders for Global Operations Program at MIT, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 104-106).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/59172
Department
Leaders for Global Operations Program at MIT; Massachusetts Institute of Technology. Engineering Systems Division; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Sloan School of Management., Engineering Systems Division., Leaders for Global Operations Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.