Show simple item record

dc.contributor.advisorCarl Wunsch.en_US
dc.contributor.authorFenty, Ian Gouverneuren_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences.en_US
dc.coverage.spatialn-cn-nfen_US
dc.date.accessioned2010-10-29T13:54:40Z
dc.date.available2010-10-29T13:54:40Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/59575
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2010.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 262-277).en_US
dc.description.abstractSea ice (SI) and ocean variability in marginal polar and subpolar seas are closely coupled. SI variability in the Labrador Sea is of climatic interest because of its relationship to deep convection/mode water formation, carbon sequestration, and Northern Hemisphere atmospheric patterns. Historically, quantifying the link between the region's observed SI and oceanic variability has been limited due to in situ observation paucity and technical challenges associated with synthesizing ocean and SI observations with a three-dimensional time-evolving dynamically consistent numerical model. To elaborate upon the relationship between SI and ocean variability, a one year (1996- 1997) state estimate of the ocean and sea ice state in Labrador Sea and Baffin Bay is constructed and analyzed. The estimate is a synthesis of a regional coupled 32 km ocean and sea ice model with a suite of contemporary in situ and satellite hydrographic and SI data. The synthesis of SI data is made possible with the (novel) adjoint of a thermodynamic SI model. Model and data are made consistent, in a least-squares sense, by iteratively adjusting several control variables, such as ocean initial and lateral open boundary conditions and the atmospheric state, to minimize an uncertainty-weighted model-data misfit cost function. It is shown that the SI pack attains a state of quasi-equilibrium in mid-March during which net SI growth/melt approaches zero; newly-formed SI diverges from coastal areas and converges, via wind/ocean forcing, in the marginal ice zone (MIZ). It is further shown that SI converging in the MIZ is primarily ablated by turbulent ocean-SI enthalpy fluxes. The primary source of energy required for sustained MIZ ice ablation is revealed to be the sensible heat reservoir of the subtropical-origin subsurface waters. Enthalpy from the heat reservoir is entrained into the mixed layer via buoyancy loss-driven convective deepening and brought to the SI via vertical mixing. An analysis of ocean surface buoyancy fluxes reveals a critical role of low-salinity upper ocean anomalies for the advancement of SI seaward of the Arctic Water/Irminger Water thermohaline front. Anomalous low-salinity waters slow the rate of buoyancy loss-driven mixed layer deepening, shielding an advancing SI pack from the subsurface heat reservoir, and are conducive to a positive surface stratification enhancement feedback from SI meltwater release, both of which extend SI lifetimes. Preliminary analysis of two additional one-year state estimates (1992-1993, 2003-2004) suggests that interannual hydrographic variability provides a first-order explanation for SI maximum extent anomalies. Additional research on the mechanisms controlling the origin and distribution of upper ocean salinity anomalies is required to further understand observed SI variability in the northwest North Atlantic.en_US
dc.description.statementofresponsibilityby Ian Gouverneur Fenty.en_US
dc.format.extent277p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.titleState estimation of the Labrador Sea with a coupled sea ice-ocean adjoint modelen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc670420800en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record