Show simple item record

dc.contributor.advisorMichael Fehler.en_US
dc.contributor.authorFang, Xinding, S.M. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences.en_US
dc.date.accessioned2010-10-29T18:40:33Z
dc.date.available2010-10-29T18:40:33Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/59789
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 40-42).en_US
dc.description.abstractWe use a 2-D finite difference method to numerically calculate the seismic response of a single finite fracture in a homogeneous media. In our experiments, we use a point explosive source and ignore the free surface effect, so the fracture scattering wave field contains two parts: P-to-P scattering and P-to-S scattering. We vary the fracture compliance within a range considered appropriate for field observations, 10-12 m/Pa to 10-9 m/Pa, and investigate the variation of the scattering pattern of a single fracture as a function of normal and tangential fracture compliance. We show that P-to-P and P-to-S fracture scattering patterns are sensitive to the ratio of normal to tangential fracture compliance and different incident angle, while radiation pattern amplitudes scale as the square of the compliance. We find that, for a vertical fracture system, if the source is located at the surface, most of the energy scattered by a fracture propagates downwards, specifically, the P-to-P scattering energy propagates down and forward while the P-to-S scattering energy propagates down and backward. Therefore, most of the fracture scattered waves observed on the surface are, first scattered by fractures, and then reflected back to the surface by reflectors below the fracture zone, so the fracture scattered waves have complex ray paths and are contaminated by the reflectivity of matrix reflectors.en_US
dc.description.statementofresponsibilityby Xinding Fang.en_US
dc.format.extent42 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.titleSensitivity analysis of fracture scatteringen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc671400332en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record