MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fabrication of high-quality microflexures using micromilling techniques

Author(s)
Gafford, Joshua B
Thumbnail
DownloadFull printable version (11.67Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Martin L. Culpepper.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This research focuses on the feasibility of using micromilling as a process for fabricating the flexural body of mesoscale nanopositioners. A desire to fabricate non-silicon microflexures for more favorable material properties and flexural responses has led MIT's Precision Compliant Systems lab to investigate the use of various metals in the design of mesoscale six-axis HexFlex nanopositioners. Micromilling is being sought as an alternative method of manufacturing HexFlex flexural bodies due to its inherent process and material flexibility. Cutting forces were approximated (and verified using FEM and previously-measured results) in order to select cutting parameters that would avoid tool failure and ensure workpiece integrity. Several HexFlex devices were successfully micromilled from various aluminum alloys. Total machining time, including setup and tool changes, was around 1.5 hours per part. The integrity of each part was verified using optical microscopy and white-light interferometry to inspect for any microcracks or otherwise unfavorable by-products of the milling process. Ultimately, it was shown that micromilling is a feasible process for manufacturing low-volume to-spec mesoscale nanopositioners (±3 [mu]m) with surface roughnesses of less than 0.300 [mu]m. Process improvements are suggested based on observations before and during the machining process.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 50).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/59914
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.