Show simple item record

dc.contributor.advisorGang Chen.en_US
dc.contributor.authorRay, Katherine Leungen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2010-11-08T17:48:53Z
dc.date.available2010-11-08T17:48:53Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/59937
dc.descriptionThesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 23).en_US
dc.description.abstractIn order to determine what type of photovoltaic solar cell could best be used in a thermoelectric photovoltaic hybrid power generator, we tested the change in efficiency due to higher temperatures of three types of solar cells: a polymer cell, an amorphous silicon cell and a CIS cell. Using an AM1.5 G solar simulator at 973 W/m2 we took the I-V curve of each of the three cells at increasing temperatures. We used the I-V curve to find the maximum power and determine the efficiency of each cell with respect to temperature. We found that the CIS cell had an efficiency of 10% and the performance decreased with respect to temperature in a non-linear manner. The efficiency at 83*C was a peak and the same efficiency as at 40"C. We found that the amorphous silicon cell tested had an efficiency of 4% at 450C that decreased with respect to temperature in a linear manner such that an 800C increase in temperature resulted in an efficiency of 3%. We further found that the polymer cell efficiency decreased from 1.1% to 1% with a 60*C increase in temperature, but that the polymer cell is destroyed at temperatures higher than 1 00*C. We determined that CIS or amorphous silicon could be suitable materials for the photovoltaic portion of the hybrid system.en_US
dc.description.statementofresponsibilityby Katherine Leung Ray.en_US
dc.format.extent23 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titlePhotovoltaic cell efficiency at elevated temperaturesen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc676836192en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record