Show simple item record

dc.contributor.advisorMichael Collins.en_US
dc.contributor.authorKoo, Terry (Terry Y.)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2010-12-06T16:37:02Z
dc.date.available2010-12-06T16:37:02Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/60102
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 167-176).en_US
dc.description.abstractAchieving a greater understanding of natural language syntax and parsing is a critical step in producing useful natural language processing systems. In this thesis, we focus on the formalism of dependency grammar as it allows one to model important head modifier relationships with a minimum of extraneous structure. Recent research in dependency parsing has highlighted the discriminative structured prediction framework (McDonald et al., 2005a; Carreras, 2007; Suzuki et al., 2009), which is characterized by two advantages: first, the availability of powerful discriminative learning algorithms like log-linear and max-margin models (Lafferty et al., 2001; Taskar et al., 2003), and second, the ability to use arbitrarily-defined feature representations. This thesis explores three advances in the field of discriminative dependency parsing. First, we show that the classic Matrix-Tree Theorem (Kirchhoff, 1847; Tutte, 1984) can be applied to the problem of non-projective dependency parsing, enabling both log-linear and max-margin parameter estimation in this setting. Second, we present novel third-order dependency parsing algorithms that extend the amount of context available to discriminative parsers while retaining computational complexity equivalent to existing second-order parsers. Finally, we describe a simple but effective method for augmenting the features of a dependency parser with information derived from standard clustering algorithms; our semi-supervised approach is able to deliver consistent benefits regardless of the amount of available training data.en_US
dc.description.statementofresponsibilityby Terry Koo.en_US
dc.format.extent176 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAdvances in discriminative dependency parsingen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc679667810en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record