MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning to reformulate long queries

Author(s)
Gupta, Neha, S.M. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (7.532Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Tommi Jaakkola.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Long search queries are useful because they let the users specify their search criteria in more detail. However, the user often receives poor results in response to the long queries from today's Information Retrieval systems. For the document to be returned as a relevant result, the system requires every query term to appear in the document. This makes the search task especially challenging for those users who lack the domain knowledge or have limited search experience. They face the difficulty of selecting the exact keywords to carry out their search. The goal of our research is to help bridge that gap so that the search engine can help novice users formulate queries in a vocabulary that appears in the index of the relevant documents. We present a machine learning approach to automatically summarize long search queries, using word specific features that capture the discriminative ability of particular words for a search task. Instead of using hand-labeled training data, we automatically evaluate a search query using a query score specific to the task. We evaluate our approach using the task of searching for related academic articles.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.
 
Includes bibliographical references (p. 82-86).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/60164
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.