Show simple item record

dc.contributor.advisorJoseph Paradiso.en_US
dc.contributor.authorTurza, Ashley Ken_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2010-12-06T17:37:58Z
dc.date.available2010-12-06T17:37:58Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/60206
dc.descriptionThesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 49).en_US
dc.description.abstractRecent architectural trends have included exploring open space and the extensive use of glass as building material. While the details of these large, light-exposed, open-air environments can be modeled as thermal fluid systems in CFD simulations, the use of dense sensor networks can provide real-time monitoring of a building's airflow and thermal management systems without the need for computationally-intensive theoretical models, and can use this data to inform and advance these models. Sensor networks can provide an accurate picture of the actual conditions of a building and how those conditions can change over time, due to deterioration or external influences. The information gathered from such networks will be critical in determining the energy efficiency of a building. To do this, a sensor network made of two types of sensors, temperature-humidity and airflow, was deployed in the large, glass-enclosed atrium of the recently-completed MIT Media Lab Extension (E14) in late March 2010. Their performance was calibrated, monitored, and the preliminary results analyzed in conjunction with the external weather conditions in the Boston metropolitan area. The results show that while the use of the sensors in monitoring temperature and humidity is successful, the airflow sensors currently require a different solution to solve both the need for low-power consumption and resolution, range, and stability in its measurements.en_US
dc.description.statementofresponsibilityby Ashley K. Turza.en_US
dc.format.extent87 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleDense, low-power environmental monitoring for smart energy profilingen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc682160036en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record