Show simple item record

dc.contributor.advisorPeter Shanahan.en_US
dc.contributor.authorFoley, Kevin Johnen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.en_US
dc.date.accessioned2011-01-26T14:20:51Z
dc.date.available2011-01-26T14:20:51Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/60765
dc.descriptionThesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 59-62).en_US
dc.description.abstractWastewater treatment is a very energy intensive industry. Singapore has a state-of-the-art wastewater treatment system that uses a number of sustainable techniques that greatly improve its overall efficiency. The centralized Changi Water Reclamation Plant is one of the most advanced treatment facilities in the world. However, there are smaller, less efficient wastewater treatment plants still in use in Singapore. One of those is located in the Kranji Catchment region adjacent to the Lim Chu Kang Air Force Base. Called BJ725, this facility consists of a primary settler and a trickling filter. The purpose of this study is to determine the feasibility of using wind power, solar power, or methane gas combustion to meet the treatment facility's energy requirement. As the first part of this feasibility study, BJ725's energy requirement was analyzed. Additionally, wind and solar output was computed given historical meteorological conditions in Singapore, and the amount of power produced during methane gas combustion was computed given sludge output at BJ725. The outcome of these calculations showed mixed results. There was not one day of wind strong enough to produce usable energy in the 33-year meteorological dataset analyzed. Thus, there is essentially no potential for wind energy to be used in Singapore. Solar energy proved to be economically viable, but only with at least a 63 percent rebate. Sludge digestion and methane gas combustion proved to be by far the most economically viable option for wastewater treatment plants in Singapore. In the case of BJ725, approximately S$8,000 of yearly income can be generated if sludge digestion and methane gas combustion is utilized. Overall, sludge digestion seems to be the best option for wastewater treatment plants throughout the rest of the world. However, the three options studied are site specific and should be analyzed on a location-specific basis.en_US
dc.description.statementofresponsibilityby Kevin John Foley.en_US
dc.format.extent65 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.subject.lcca-si---en_US
dc.titleWastewater treatment and energy : an analysis on the feasibility of using renewable energy to power wastewater treatment plants in Singaporeen_US
dc.title.alternativeUsing renewable energy to power wastewater treatment plants in Singaporeen_US
dc.typeThesisen_US
dc.description.degreeM.Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc693566957en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record